A Cascade Network Algorithm Employing Progressive RPROP

N.K. Treadgold and T.D. Gedeon
School of Computer Science& Engineering
The University of New South Wales
Sydney N.SW. 2052 AUSTRALIA
{ nickt | tom }@cse.unsw.edu.au

ABSTRACT

Cascade Correlation (Cascor) has proved to be @fiawnethod for training neural networks.
Cascor, however, has been shown not to generaieow regression and some classification
problems. A new Cascade network algorithm employifrggressive RPROP (Casper), is
proposed. Casper, like Cascor, is a constructiaenieg algorithm which builds cascade
networks. Instead of using weight freezing and aetation measure to install new neurons,
however, Casper uses a variation of RPROP to trenwhole network. Casper is shown to
produce more compact networks, which generalise better than Cascor.

INTRODUCTION

The Cascade Correlation algorithm (Fahlman and drebi1990) is a very powerful
method for training artificial neural networks. @€as is a constructive algorithm
which begins training with a single input layer oented directly to the output layer.
Neurons are added one at time to the network amda@rnected to all previous hidden
and input neurons, producing a cascade network.nViihegew neuron is to be added to
the network, all previous network weights are ‘®az The input weights of the
neuron which is about to be added are then traioedhaximise the correlation
between this neuron’s output and the remaining oktwrror. The new neuron is then
inserted into the network, and all weights conngdte the output neurons are then
trained to minimise the error function. Thus thare two training phases: the training
of hidden neuron weights, and the training of outpeights. Both training phases use
the QuickProp algorithm (Fahlman, 1988).

The separation of training phases allows Cascotraim a pool of neurons (with
different random starting weights), and to seldéa heuron with the best resulting
correlation for insertion. The training of both H&h neurons and the output weights is
continued until the error stops decreasing by aassdunt. The freezing of weights
results in a very efficient algorithm, since itadls network values to be cached (and
hence they need not be recalculated when a newmésiadded). In addition there is
no back propagation of errors since only one layfeweights is trained at a given
time.

While Cascor has been shown to be very succedsdlhan, 1990), two drawbacks
have been pointed out. First, Kwok and Yeung (1988) shown that the technique
of weight freezing can result in excessively larggworks. They reason that weight
freezing can result in early hidden units which poer feature detectors. The network
then requires further hidden units to fix the esramtroduced by these earlier units.
Second, it has been demonstrated that Cascor aoegeneralise well on regression
and some classification problems (Hwang, You, Lag dou, 1996; Adams and
Waugh, 1995). Hwang et al. explain these resultpdigting out that the use of the

correlation measure in Cascor forces the hiddemsuoi saturate, which produces
jagged edges in the network outputs.

THE CASPER ALGORITHM

Casper uses a modified version of the RPROP atgoriRiedmiller and Braun, 1993;
Riedmiller, 1994) for network training. RPROP igmdient descent algorithm which
uses separate adaptive learning rates for eachhtvdigich weight begins with an
initial learning rate, which is then adapted depenan the sign of the error gradient
seen by the weight as it traverses the error surface.

The Casper algorithm constructs cascade networks similar manner to Cascor:
Casper starts with a single hidden neuron and sabedy adds single hidden
neurons. RPROP is used to train the whole netwadhdime a hidden neuron is
added. RPROP is modified, however, such that wheswaneuron is added the initial
learning rates for the weights in the network @set to different values, depending on
the position of the weight in the network. The metwis divided into three separate
regions, each with its own initial learning rate, U2 and L3 (Figure 1). The first
region is made up of all weights connecting to rileg/ neuron from previous hidden
and input neurons. The second consists of all vigigbnnecting the output of the new
neuron to the output neurons. The third is madefufhe remaining weights, which
consist of all weights connected to, and comingnfrahe old hidden and input
neurons.

Figure 1: The Casper architecture - a second hidden unifjusisheen added. The
vertical lines sum their inputs.

Second Hidden Output Q

Unit Unit
First Hidden g\
Unit <
I 1
Q [I
T m .
Input N T
inc M 1
Bias I — - -
O Artificial Neuror | | L2 Weights

[] L1 weights [] L3 weights

The values of L1, L2 and L3 are set such that L1L.2>> L3. The reason for these
settings is similar to the reason that Cascor tisescorrelation measure: the high

value of L1 as compared to L2 and L3 allows the fgden neuron to learn the
remaining network error. Similarly, having L2 largban L3 allows the new neuron to
reduce the network error, without too much intefere from other weights. This
interference has been termed the ‘herd effect’ (Fahlman, 1990).

Importantly, however, no neurons are frozen, anacldf benefit can be gained by
the network by modifying an old weight, this occuatbeit at an initially slower rate

than the weights connected to the new unit. Thusp@aretains the benefits of the
weight freezing and the correlation techniques abcor, while removing both the

saturation problems caused by the correlation nreasind the permanent installation
of poorly performing neurons caused by weight freezing.

Casper also makes use of weight decay as a meainsptove the generalisation

properties of the constructed network. After sompegimentation we found that the
addition of a Simulated Annealing (SA) term appltedthe weight decay, as used in
the SARPROP algorithm (Treadgold and Gedeon, 1616} improved convergence

and generalisation. Each time a new hidden unitssrted, the weight decay begins
with a large magnitude, which is then reduced ley 3\ term. The amount of weight
decay is proportional to the weight magnitude sgdawhich results in larger weights
being decayed more rapidly. The error gradient used in Casper thus becomes:

SE/dw; =3E/dw;; - k* sign(wy)*w;? * 2°0-01HEpoch

HEpoch in the above formula refers to the number of epoelapsed since the
addition of the last hidden neurosign returns the sign (positive/negative) of its
operand,and k is a user defined parameter which effects the ihadm of weight
decay used.

In Casper a new neuron is installed after the degreof the RMS error has fallen
below a set amount. The RMS error must fall byeast 1% of its previous value in a
given time period. The time period over which thigasure is taken is given by the
formula: 15+P*N, where N is the number of currenitigtalled neurons, and P is a
parameter set prior to training. This formula wasrfd experimentally to give the best
overall convergence properties. The result of tinégning method is that Casper
increases the period over which the network is trained as the network grows in size.

BENCHMARKING RESULTS

To test the effectiveness of the Casper algorithve, decided to compare its
performance against that of the Cascor algorithmaomumber of benchmark
problems. In Casper a number of parameters regaiteng. The following (standard)
parameter values were used for RPROP= 1.2, = 0.5,Ana= 50, Ain = 1x10°. In
addition, a constant value of 0.0001 was addedé¢oderivative of the sigmoid in
order to overcome the ‘flat spot’ problem (Fahima®88). The hyperbolic arctan
error function (Fahlman, 1988) was used for classiion problems, while the
standard sum of squares error function was usedeffression problems. All weights

were initialised to random values in the range 10.D.7, and the standard symmetric
sigmoid non linearity (-0.5, 0.5) was used for théden units. Training of the initial
network used the initial update valiig= 0.2. The values of L1, L2, and L3 were set
to 0.2, 0.005, and 0.001 respectively. All theseapeeter values were found to be
problem independent, and hence were treated asart®isThe remaining parameter
values, k (the weight decay value) and N (the ingitength), were set depending on
the problem.

The Cascor algorithm used for benchmarking wasioétafrom the public domain
Carnegie Mellon University (CMU) Al Repository. Fail comparisons, a pool of
eight candidate neurons were used and a maximumidgaiteration of 100 was set
for both the hidden and output neurons, as usdeahiman (1990). All further Cascor
parameters were kept at the default values.

Two Spirals Benchmark

The two spiral benchmark consists of two interlatlgpirals, each made up of 97
points (Figure 2). The network must learn to digtiish the two spirals. This problem
was used by Fahlman (1990) to demonstrate thetefeess of the Cascor algorithm
on a problem known to be very difficult for traditial Back Propagation to solve
(Fahlman, 1990). In order to compare Casper andcdCasn this problem, 100
independent runs were performed using each algoritthe standard test set for the
two spirals dataset (as supplied with the Casagordhm) was used to measure the
resulting generalisation ability of the networksig test set consists of two spirals
each made up of 96 points, slightly rotated retatte the original spirals. The
parameter values used for the Casper algorithm Refeand k=0.005. Training was
halted when all network outputs were within 0.2 of the required training outputs.

Figure 2: The two spirals training set

E

The average, standard deviation and median forfdhewing characteristics were
measured: epochs trained, hidden units installechber of connection crossings and
percentage correct on the test set. Fahiman (18@fihes the term connection
crossings as “the number of multiply-accumulatgst® propagate activation values
forward through the network and error values baakivaThis term is a more valid
way to compare learning times than number of eptrelised, since Cascor makes use
of weight freezing and caching (Fahlman, 1990) Wwhigreatly improves the
algorithm’s efficiency.

The results for Casper and Cascor on the two sppalblem are shown in Tables 1
and 2 respectively. Figures 3 is a histogram ofrtheber of hidden units created by
the Casper and Cascor algorithms over the 100iniairuns. Figures 4, 5 and 6 are
plots of the best results obtained (in terms otteas on the test set) from the Casper
runs (produced by networks of hidden unit size 12, and 14 respectively), and
Figures 7, 8, and 9 are plots of the best resultmioed from the Cascor runs
(produced by networks of hidden unit size 14, 17 and 18 respectively).

Table 1: Two spiral results for Casper

Epochs Hidden Units Con. Crossings Test Set
Average 2437 13.49 9.57 x 10 97.80
Std. Dev. 627 2.41 5.37 x 10 2.22
Median 2307 13.0 8.56 x 10 98.44

Table 2: Two spiral results for Cascor

Epochs Hidden Units Con. Crossings Test Set
Average 1686 15.96 2.02x 10 96.13
Std. Dev. 209 2.17 4.47 x 10 2.11
Median 1689 16.0 1.99 x 10 96.35

Figure 3: Hidden unit histogram for the two spiral problem

Frequncy
| |
.h
N
\

Q
O
Q
[%2]
(o]
=]

9
111315 1719 91 23 25
Hidden Units

Figure 4: Casper 12 hiddefrigure 5: Casper 12 hiddeRigure 6: Casper 14 hidden

Figure 7: Cascor 14 hiddefrigure 8: Cascor 17 hiddeRigure 9: Cascor 18 hidden

Regression Benchmark

Five regression functions were chosen to compasp&aand Cascor. The functions
are described in detail in Hwang et al. (1994), and are shown below:

e Simple interaction function

f W (x,,x,)=10.39(x, - 04(x,- 06+ 039.

e Radial function:
f) (x,,x,)=24.234(r?(0.75-r2)),
r2=(x,-0.5)% +(x, - 0.5)?
« Harmonic function:
letyy =% -05andy=x-0.5
f(x,,x,)=42.659(01+y,(Q05+y; - 197y, + §;)).

« Additive function:
f W (x,,x,)=13356(1F 1- x,) +e?* 'sin@Bm(x, - 0.6)%)

+ e’ %9 5in(4m(x, - 0.9)%)).
e Complex interaction function:

f ®(x,,x,) =19(L35+e™ sin(13(x, - 0.6?%) * sin(k,)).

The set up of training and test data follows thehoe of Hwang et al. (1994). For
each function two sets of training data were cibatme noiseless and one noisy,
created using 225 randomly selected pairs [0, Hbstissa values {(x;)}. The same
abscissa values were used for all five functiorige Moisy data was created by adding
independent and identically distributa@d] Gaussian noise, with zero mean and unit
variance, giving an approximate signal to noiséraf 4 (Hwang et al., 1994). For
each function an independent test set of size 2&380generated on a regularly spaced
grid [0,1F, as used by Hwang et al. (1996).

The network parameters for Cascor were kept theesasnfor the two spirals runs,
except that a linear output node was used, asardatd for regression problems.

Casper also employed a linear output node, andahees for N and k were set to 7
and 0.0005 respectively.

The fraction of variance unexplained (FVU) was theasure chosen to compare the
performance of Casper and Cascor on the test sedr{giet al. 1994). FVU is defined
as:

N -~

Z (F(x)) - f(x))?

FVvu = =2

Z (f(x)) - f(x))°*
=1

For each regression function 100 runs were perfdrowng different random starting
weight values. Training was continued for both alpmns until 30 hidden units had
been installed. The FVU on the test set was medsafter the installation of each
hidden unit for both Casper and Cascor. The meBMUd values after each hidden
unit had been installed is shown in Figures 10 to 14.

DISCUSSION

The results on the two spirals problem demonstrdtas Casper is able to produce
networks which are more compact in terms of the lmemof hidden units than Cascor,
even though Cascor trains a pool of eight hiddemrores and selects the best. The
difference in the median network size produced hmy tivo algorithms is 3 hidden
units, which because of the cascade network stigtguates to Casper using 54 less
weights than Cascor in the median case. Cascolvewis less expensive in terms of
connection crossings than Casper. This result islyndue to the fact that Cascor is
able to cache calculations since it uses weigldzfrig, while Casper still employs
back propagation of errors.

Figure 10: Simple interaction function

—l— CASCOR
—[1— CASPER
—4A— CASCOR - noise
—A— CASPER - noise

0.09 &
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01 y

FVU

5 7 9 11 13 15 17 19 21 23 25 27 29
Hiiden Unit

Figure 11: Radial function

0.25

—l— CASCOR

A
alale

AA
-L.L-.'L-l-J my

—1— CASPER
—&A— CASCOR - noise
—A— CASPER - noise

NN D DN DD
Iminlnln

9 11 13 15 17 19 21 23 25 27 29

Hidden Unit

Figure 12: Harmonic function

1 —m— CASCOR
0.9 —O— CASPER
0.8 —A— CASCOR - noise
8; —A— CASPER - noise

FvU

9 11 13 15 17 19 21 23 25 27 29
Hidden Unit

For the two spirals dataset, out of the 100 trgjrmims, Casper produced 30 networks
which gave 100% correct results on the test setiewascor produced only 3 such
networks. The outputs of these 3 networks are showigures 8 to 10, in which the
characteristic jagged outputs produced by Cascorhbeaseen. On the other hand,
Figures 5 to 7 produced by Casper, demonstratsrtizoth outputs produced by this
algorithm, and illustrate qualitatively Casper’dtbe generalisation even in the cases
where 100% correct classification on the test st abtained by both algorithms. As
expected, the Cascor algorithm performs poorly egression datasets, as predicted
by Hwang et al (1996). Casper, on the other hamépbie to reliably produce good
solutions on these datasets. In particular, Casaotbe seen to suffer from over fitting
on the noisy datasets as seen in Figure 11, whakp€r succeeds in maintaining a
good FVU as training continues.

Figure 13: Additive function

—— CASCOR
—1— CASPER
—A— CASCOR - noise

0.16
0.14

' —A— CASPER - noise

FVU
o
o
®

[]
>

5 7 9 11 13 15 17 19 21 23 25 27 29
Hiiden Unit

Figure 14: Complex Interaction function

0.45 —l— CASCOR
04 A —[0— CASPER

0.35 _
0.3 1 —a&A— CASCOR - noise

—A— CASPER - noise

Hidden Unit

The weight decay term employed by the Casper dlgarivas found to effect both the
resulting generalisation ability of the networks,veell as the number of hidden units
installed. In general, the less weight decay uséth{ned from smaller k values), the
more compact the final network (and the shorter tiianing time); however the
network generalisation usually suffered. The us¢hefSA term in the weight decay
was found to produce more compact networks, whiidl maintaining good
generalisation characteristics. We believe thad thdcurs because the high weight
decay values after the addition of a new hiddehartias a noise factor, allowing the
network to access more promising parts of the estwface, which results in a more
compact network. The high initial weight decay alssults in reduced weight
magnitudes, and thus the hidden neurons are lesdg tb saturate and produce jagged
outputs.

The results of these comparisons highlight the fhat the correlation and weight
freezing techniques used by Cascor are not negesaolve complex problems. It is
the cascade connections, however, which allow ithéelm units to act as higher order
feature detectors and thus gives both Cascor ampeCahe ability to solve such
problems. The use of ‘higher order’ neurons hambedised successfully in other
training algorithms such as Projection Pursuit Learning methods (Hwang et al, 1994).

CONCLUSION

A new constructive algorithm, Casper, is proposéfe have shown that weight
freezing and the correlation measure employed isc@aare not required to produce
networks capable of solving complex problems. Cagpshown to produce networks
which are both more compact in terms of hidden oesirand generalise better than
those produced by the Cascor algorithm.

REFERENCES
Adams, A., and Waugh, S. (1995) Function Evaluadod the Cascade-Correlation
architecture IrProc. 1995 |EEE Int. Conf. Neural Networks. pp. 942-946.

Fahiman, S.E. (1988) Faster learning variationsbaokpropagation: An empirical
study. InProc. 1988 Connectionist Models Summer School. San Mateo, CA:
Morgan Kauffman

Fahlman, S.E., and Lebiere, C. (1990) The cascadetation learning architecture.
In Advances in Neural Information Processing Il, Touretzky, Ed. San Mateo,
CA: Morgan Kauffman, 1990, pp. 524-532.

Hwang, J., Lay, S., Maechler, R. And Martin, D. 949 Regression Modeling in
Back-Propagation and Projection Pursuit LearnihBEE Trans. Neural
Networks vol. 5, no. 3. pp. 342-353.

Hwang, J., You, S., Lay, S., and Jou, |. (1996% Tascade-Correlation Learning: A
Projection Pursuit Learning Perspectid&EE Trans. Neural Networks vol. 7,
no. 2. pp. 278-289.

Kwok, T., and Yeung, D. (1993) Experimental Anadysi Input Weight Freezing in
Constructive Neural Networks. IProc. 1993 IEEE Int. Conf. Neural
Networks. pp. 511-516.

Riedmiller, M. and Braun, H. (1993) A Direct Adami Method for Faster
Backpropagation Learning: The RPROP Algorithm. Ruspini, H., (Ed.)
Proc. of the ICNN 93, San Francisco, pp. 586-591.

Riedmiller, M. (1994) Rprop - Description and Immlentation Details, Technical
Report, University of Karlsruhe.

Treadgold, N.K., and Gedeon, T.D. (1996) A Simuwafenealing Enhancement to
Resilient BackpropagationProc. Int. Panel Conf. Soft and Intelligent
Computing, Budapest pp. 293-298.

View publication stats

