
A Cascade Network Algorithm Employing Progressive RPROP

N.K. Treadgold and T.D. Gedeon
School of Computer Science & Engineering

The University of New South Wales
Sydney N.S.W. 2052 AUSTRALIA

{ nickt | tom }@cse.unsw.edu.au

ABSTRACT
Cascade Correlation (Cascor) has proved to be a powerful method for training neural networks.
Cascor, however, has been shown not to generalise well on regression and some classification
problems. A new Cascade network algorithm employing Progressive RPROP (Casper), is
proposed. Casper, like Cascor, is a constructive learning algorithm which builds cascade
networks. Instead of using weight freezing and a correlation measure to install new neurons,
however, Casper uses a variation of RPROP to train the whole network. Casper is shown to
produce more compact networks, which generalise better than Cascor.

INTRODUCTION
The Cascade Correlation algorithm (Fahlman and Lebiere, 1990) is a very powerful
method for training artificial neural networks. Cascor is a constructive algorithm
which begins training with a single input layer connected directly to the output layer.
Neurons are added one at time to the network and are connected to all previous hidden
and input neurons, producing a cascade network. When a new neuron is to be added to
the network, all previous network weights are ‘frozen’. The input weights of the
neuron which is about to be added are then trained to maximise the correlation
between this neuron’s output and the remaining network error. The new neuron is then
inserted into the network, and all weights connected to the output neurons are then
trained to minimise the error function. Thus there are two training phases: the training
of hidden neuron weights, and the training of output weights. Both training phases use
the QuickProp algorithm (Fahlman, 1988).

The separation of training phases allows Cascor to train a pool of neurons (with
different random starting weights), and to select the neuron with the best resulting
correlation for insertion. The training of both hidden neurons and the output weights is
continued until the error stops decreasing by a set amount. The freezing of weights
results in a very efficient algorithm, since it allows network values to be cached (and
hence they need not be recalculated when a new neuron is added). In addition there is
no back propagation of errors since only one layer of weights is trained at a given
time.

While Cascor has been shown to be very successful (Fahlman, 1990), two drawbacks
have been pointed out. First, Kwok and Yeung (1993) have shown that the technique
of weight freezing can result in excessively large networks. They reason that weight
freezing can result in early hidden units which are poor feature detectors. The network
then requires further hidden units to fix the errors introduced by these earlier units.
Second, it has been demonstrated that Cascor does not generalise well on regression
and some classification problems (Hwang, You, Lay and Jou, 1996; Adams and
Waugh, 1995). Hwang et al. explain these results by pointing out that the use of the

correlation measure in Cascor forces the hidden units to saturate, which produces
jagged edges in the network outputs.

THE CASPER ALGORITHM
Casper uses a modified version of the RPROP algorithm (Riedmiller and Braun, 1993;
Riedmiller, 1994) for network training. RPROP is a gradient descent algorithm which
uses separate adaptive learning rates for each weight. Each weight begins with an
initial learning rate, which is then adapted depending on the sign of the error gradient
seen by the weight as it traverses the error surface.

The Casper algorithm constructs cascade networks in a similar manner to Cascor:
Casper starts with a single hidden neuron and successively adds single hidden
neurons. RPROP is used to train the whole network each time a hidden neuron is
added. RPROP is modified, however, such that when a new neuron is added the initial
learning rates for the weights in the network are reset to different values, depending on
the position of the weight in the network. The network is divided into three separate
regions, each with its own initial learning rate L1, L2 and L3 (Figure 1). The first
region is made up of all weights connecting to the new neuron from previous hidden
and input neurons. The second consists of all weights connecting the output of the new
neuron to the output neurons. The third is made up of the remaining weights, which
consist of all weights connected to, and coming from, the old hidden and input
neurons.

Figure 1: The Casper architecture - a second hidden unit has just been added. The
vertical lines sum their inputs.

The values of L1, L2 and L3 are set such that L1 >> L2 > L3. The reason for these
settings is similar to the reason that Cascor uses the correlation measure: the high

First Hidden
Unit

Second Hidden
Unit

Bias

Input

Output
Unit

Artificial Neuron

L1 Weights

L2 Weights

L3 Weights

value of L1 as compared to L2 and L3 allows the new hidden neuron to learn the
remaining network error. Similarly, having L2 larger than L3 allows the new neuron to
reduce the network error, without too much interference from other weights. This
interference has been termed the ‘herd effect’ (Fahlman, 1990).

Importantly, however, no neurons are frozen, and hence if benefit can be gained by
the network by modifying an old weight, this occurs, albeit at an initially slower rate
than the weights connected to the new unit. Thus Casper retains the benefits of the
weight freezing and the correlation techniques of Cascor, while removing both the
saturation problems caused by the correlation measure, and the permanent installation
of poorly performing neurons caused by weight freezing.

Casper also makes use of weight decay as a means to improve the generalisation
properties of the constructed network. After some experimentation we found that the
addition of a Simulated Annealing (SA) term applied to the weight decay, as used in
the SARPROP algorithm (Treadgold and Gedeon, 1996) often improved convergence
and generalisation. Each time a new hidden unit is inserted, the weight decay begins
with a large magnitude, which is then reduced by the SA term. The amount of weight
decay is proportional to the weight magnitude squared, which results in larger weights
being decayed more rapidly. The error gradient used in Casper thus becomes:

δΕ/δwij = δΕ/δwij - k* sign(wij)*w ij
2 * 2-0.01*HEpoch

HEpoch in the above formula refers to the number of epochs elapsed since the
addition of the last hidden neuron, sign returns the sign (positive/negative) of its
operand, and k is a user defined parameter which effects the magnitude of weight
decay used.

In Casper a new neuron is installed after the decrease of the RMS error has fallen
below a set amount. The RMS error must fall by at least 1% of its previous value in a
given time period. The time period over which this measure is taken is given by the
formula: 15+P*N, where N is the number of currently installed neurons, and P is a
parameter set prior to training. This formula was found experimentally to give the best
overall convergence properties. The result of this training method is that Casper
increases the period over which the network is trained as the network grows in size.

BENCHMARKING RESULTS
To test the effectiveness of the Casper algorithm, we decided to compare its
performance against that of the Cascor algorithm on a number of benchmark
problems. In Casper a number of parameters require setting. The following (standard)
parameter values were used for RPROP: η+ = 1.2, η- = 0.5, ∆max = 50, ∆min = 1x10-6. In
addition, a constant value of 0.0001 was added to the derivative of the sigmoid in
order to overcome the ‘flat spot’ problem (Fahlman, 1988). The hyperbolic arctan
error function (Fahlman, 1988) was used for classification problems, while the
standard sum of squares error function was used for regression problems. All weights

were initialised to random values in the range -0.7 to 0.7, and the standard symmetric
sigmoid non linearity (-0.5, 0.5) was used for the hidden units. Training of the initial
network used the initial update value ∆0 = 0.2. Τhe values of L1, L2, and L3 were set
to 0.2, 0.005, and 0.001 respectively. All these parameter values were found to be
problem independent, and hence were treated as constants. The remaining parameter
values, k (the weight decay value) and N (the training length), were set depending on
the problem.

The Cascor algorithm used for benchmarking was obtained from the public domain
Carnegie Mellon University (CMU) AI Repository. For all comparisons, a pool of
eight candidate neurons were used and a maximum learning iteration of 100 was set
for both the hidden and output neurons, as used by Fahlman (1990). All further Cascor
parameters were kept at the default values.

Two Spirals Benchmark
The two spiral benchmark consists of two interlocked spirals, each made up of 97
points (Figure 2). The network must learn to distinguish the two spirals. This problem
was used by Fahlman (1990) to demonstrate the effectiveness of the Cascor algorithm
on a problem known to be very difficult for traditional Back Propagation to solve
(Fahlman, 1990). In order to compare Casper and Cascor on this problem, 100
independent runs were performed using each algorithm. The standard test set for the
two spirals dataset (as supplied with the Cascor algorithm) was used to measure the
resulting generalisation ability of the networks. This test set consists of two spirals
each made up of 96 points, slightly rotated relative to the original spirals. The
parameter values used for the Casper algorithm were P=5 and k=0.005. Training was
halted when all network outputs were within 0.2 of the required training outputs.

Figure 2: The two spirals training set

The average, standard deviation and median for the following characteristics were
measured: epochs trained, hidden units installed, number of connection crossings and
percentage correct on the test set. Fahlman (1990) defines the term connection
crossings as “the number of multiply-accumulate steps to propagate activation values
forward through the network and error values backward”. This term is a more valid
way to compare learning times than number of epochs trained, since Cascor makes use
of weight freezing and caching (Fahlman, 1990) which greatly improves the
algorithm’s efficiency.

The results for Casper and Cascor on the two spirals problem are shown in Tables 1
and 2 respectively. Figures 3 is a histogram of the number of hidden units created by
the Casper and Cascor algorithms over the 100 training runs. Figures 4, 5 and 6 are
plots of the best results obtained (in terms of success on the test set) from the Casper
runs (produced by networks of hidden unit size 12, 12, and 14 respectively), and
Figures 7, 8, and 9 are plots of the best results obtained from the Cascor runs
(produced by networks of hidden unit size 14, 17 and 18 respectively).

Table 1: Two spiral results for Casper

Epochs Hidden Units Con. Crossings Test Set %
Average 2437 13.49 9.57 x 107 97.80
Std. Dev. 627 2.41 5.37 x 107 2.22
Median 2307 13.0 8.56 x 107 98.44

Table 2: Two spiral results for Cascor

Epochs Hidden Units Con. Crossings Test Set %
Average 1686 15.96 2.02 x 107 96.13
Std. Dev. 209 2.17 4.47 x 106 2.11
Median 1689 16.0 1.99 x 107 96.35

Figure 3: Hidden unit histogram for the two spiral problem

Figure 4: Casper 12 hidden Figure 5: Casper 12 hidden Figure 6: Casper 14 hidden

9 11 13 15 17 19 21 23 25

Casper

Cascor

0

10

20

30

F
re

q
u

n
cy

Hidden Units

Figure 7: Cascor 14 hidden Figure 8: Cascor 17 hidden Figure 9: Cascor 18 hidden

Regression Benchmark
Five regression functions were chosen to compare Casper and Cascor. The functions
are described in detail in Hwang et al. (1994), and are shown below:
• Simple interaction function

• Radial function:

• Harmonic function:
 let y1 = x1 - 0.5 and y2 = x2 - 0.5

• Additive function:

• Complex interaction function:

The set up of training and test data follows the method of Hwang et al. (1994). For
each function two sets of training data were created, one noiseless and one noisy,
created using 225 randomly selected pairs [0,1] of abscissa values {(x1,x2)}. The same
abscissa values were used for all five functions. The noisy data was created by adding
independent and identically distributed (iid) Gaussian noise, with zero mean and unit
variance, giving an approximate signal to noise ratio of 4 (Hwang et al., 1994). For
each function an independent test set of size 2500 was generated on a regularly spaced
grid [0,1]2, as used by Hwang et al. (1996).

The network parameters for Cascor were kept the same as for the two spirals runs,
except that a linear output node was used, as is standard for regression problems.

f x x x x() (,) . ((.) (.) .) .1
1 2 1 21 0 3 9 1 0 4 0 6 0 3 6= − − +

f x x r r

r x x

() (,) . ((.)) ,

(.) (.)

2
1 2

2 2

2
1

2
2

2

2 4 2 3 4 0 7 5

0 5 0 5

= −

= − + −

f x x y y y y y() (,) . (. (.)) .3
1 2 1 1

4
1
2

2
2

2
44 2 6 5 9 0 1 0 0 5 1 0 5= + + − +

f x x x() (,) . (. ()4
1 2 11 3 3 5 6 1 5 1= − + −

+ −

−

−

e x

e x

x

x

2 1
1

2

3 0 5
2

2

1

2

3 0 6

4 0 9

s in ((.))

s in ((.))) .(.)

π
π

f x x e x e xx x() (,) . (. s in ((.)) s in ()) .5
1 2 1

2
21 9 1 3 5 1 3 0 6 71 2= + − −

Casper also employed a linear output node, and the values for N and k were set to 7
and 0.0005 respectively.

The fraction of variance unexplained (FVU) was the measure chosen to compare the
performance of Casper and Cascor on the test set (Hwang et al. 1994). FVU is defined
as:

For each regression function 100 runs were performed using different random starting
weight values. Training was continued for both algorithms until 30 hidden units had
been installed. The FVU on the test set was measured after the installation of each
hidden unit for both Casper and Cascor. The median FVU values after each hidden
unit had been installed is shown in Figures 10 to 14.

DISCUSSION
The results on the two spirals problem demonstrates that Casper is able to produce
networks which are more compact in terms of the number of hidden units than Cascor,
even though Cascor trains a pool of eight hidden neurons and selects the best. The
difference in the median network size produced by the two algorithms is 3 hidden
units, which because of the cascade network structure equates to Casper using 54 less
weights than Cascor in the median case. Cascor, however, is less expensive in terms of
connection crossings than Casper. This result is mainly due to the fact that Cascor is
able to cache calculations since it uses weight freezing, while Casper still employs
back propagation of errors.

Figure 10: Simple interaction function

F V U
f x f x

f x f x

l l
l

N

l l
l

N=
−

−

=

=

∑

∑

(
~

() ())

(() ())

2

1

2

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

5 7 9 11 13 15 17 19 21 23 25 27 29

Hiiden Unit

F
V

U

CASCOR

CASPER

CASCOR - noise

CASPER - noise

Figure 11: Radial function

Figure 12: Harmonic function

For the two spirals dataset, out of the 100 training runs, Casper produced 30 networks
which gave 100% correct results on the test set, while Cascor produced only 3 such
networks. The outputs of these 3 networks are shown in Figures 8 to 10, in which the
characteristic jagged outputs produced by Cascor can be seen. On the other hand,
Figures 5 to 7 produced by Casper, demonstrate the smooth outputs produced by this
algorithm, and illustrate qualitatively Casper’s better generalisation even in the cases
where 100% correct classification on the test set was obtained by both algorithms. As
expected, the Cascor algorithm performs poorly on regression datasets, as predicted
by Hwang et al (1996). Casper, on the other hand, is able to reliably produce good
solutions on these datasets. In particular, Cascor can be seen to suffer from over fitting
on the noisy datasets as seen in Figure 11, while Casper succeeds in maintaining a
good FVU as training continues.

0

0.05

0.1

0.15

0.2

0.25

5 7 9 11 13 15 17 19 21 23 25 27 29

Hidden Unit

F
V

U

CASCOR

CASPER

CASCOR - noise

CASPER - noise

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 7 9 11 13 15 17 19 21 23 25 27 29

Hidden Unit

F
V

U

CASCOR

CASPER

CASCOR - noise

CASPER - noise

Figure 13: Additive function

Figure 14: Complex Interaction function

The weight decay term employed by the Casper algorithm was found to effect both the
resulting generalisation ability of the networks, as well as the number of hidden units
installed. In general, the less weight decay used (obtained from smaller k values), the
more compact the final network (and the shorter the training time); however the
network generalisation usually suffered. The use of the SA term in the weight decay
was found to produce more compact networks, while still maintaining good
generalisation characteristics. We believe that this occurs because the high weight
decay values after the addition of a new hidden unit act as a noise factor, allowing the
network to access more promising parts of the error surface, which results in a more
compact network. The high initial weight decay also results in reduced weight
magnitudes, and thus the hidden neurons are less likely to saturate and produce jagged
outputs.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

5 7 9 11 13 15 17 19 21 23 25 27 29

Hiiden Unit

F
V

U

CASCOR

CASPER

CASCOR - noise

CASPER - noise

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

5 7 9 11 13 15 17 19 21 23 25 27 29

Hidden Unit

F
V

U

CASCOR

CASPER

CASCOR - noise

CASPER - noise

The results of these comparisons highlight the fact that the correlation and weight
freezing techniques used by Cascor are not necessary to solve complex problems. It is
the cascade connections, however, which allow the hidden units to act as higher order
feature detectors and thus gives both Cascor and Casper the ability to solve such
problems. The use of ‘higher order’ neurons has been utilised successfully in other
training algorithms such as Projection Pursuit Learning methods (Hwang et al, 1994).

CONCLUSION
A new constructive algorithm, Casper, is proposed. We have shown that weight
freezing and the correlation measure employed in Cascor are not required to produce
networks capable of solving complex problems. Casper is shown to produce networks
which are both more compact in terms of hidden neurons and generalise better than
those produced by the Cascor algorithm.

REFERENCES
Adams, A., and Waugh, S. (1995) Function Evaluation and the Cascade-Correlation

architecture In Proc. 1995 IEEE Int. Conf. Neural Networks. pp. 942-946.

Fahlman, S.E. (1988) Faster learning variations on backpropagation: An empirical
study. In Proc. 1988 Connectionist Models Summer School. San Mateo, CA:
Morgan Kauffman

Fahlman, S.E., and Lebiere, C. (1990) The cascade-correlation learning architecture.
In Advances in Neural Information Processing II, Touretzky, Ed. San Mateo,
CA: Morgan Kauffman, 1990, pp. 524-532.

Hwang, J., Lay, S., Maechler, R. And Martin, D. (1994) Regression Modeling in
Back-Propagation and Projection Pursuit Learning. IEEE Trans. Neural
Networks vol. 5, no. 3. pp. 342-353.

Hwang, J., You, S., Lay, S., and Jou, I. (1996) The Cascade-Correlation Learning: A
Projection Pursuit Learning Perspective. IEEE Trans. Neural Networks vol. 7,
no. 2. pp. 278-289.

Kwok, T., and Yeung, D. (1993) Experimental Analysis of Input Weight Freezing in
Constructive Neural Networks. In Proc. 1993 IEEE Int. Conf. Neural
Networks. pp. 511-516.

Riedmiller, M. and Braun, H. (1993) A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm. In: Ruspini, H., (Ed.)
Proc. of the ICNN 93, San Francisco, pp. 586-591.

Riedmiller, M. (1994) Rprop - Description and Implementation Details, Technical
Report, University of Karlsruhe.

Treadgold, N.K., and Gedeon, T.D. (1996) A Simulated Annealing Enhancement to
Resilient Backpropagation. Proc. Int. Panel Conf. Soft and Intelligent
Computing, Budapest pp. 293-298.

View publication statsView publication stats

